Mirror symmetry for certain non-Kähler elliptic surfaces
Abigail Ward
Abstract: The logarithmic transformation is an operation on complex elliptic surfaces which can be used to produce interesting spaces from more familiar ones. I will first give homological mirror symmetry results for surfaces which are constructed by performing two logarithmic transformations to the product of P^1 with an elliptic curve, a class of surfaces which includes the classical Hopf surface (S^1 x S^3). I will then use this work, along with work of Auroux, Efimov and Katzarkov on the Fukaya category of singular curves, to describe some work in progress on a potential mirror operation to the logarithmic transformation and some applications.
algebraic geometrydifferential geometrygeometric topologysymplectic geometry
Audience: researchers in the topic
Series comments: This is the free mathematics seminar. Free as in freedom. We use only free and open source software to run the seminar.
The link to each week's talk is sent to the members of the e-mail list. The registration link to this mailing list is available on the homepage of the seminar.
| Organizers: | Jonny Evans*, Ailsa Keating, Yanki Lekili* |
| *contact for this listing |
